首页> 外文OA文献 >Reweighted Infrared Patch-Tensor Model With Both Non-Local and Local Priors for Single-Frame Small Target Detection
【2h】

Reweighted Infrared Patch-Tensor Model With Both Non-Local and Local Priors for Single-Frame Small Target Detection

机译:具有非本地和局部的重加权红外补丁 - 张量模型   单帧小目标检测的先驱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many state-of-the-art methods have been proposed for infrared small targetdetection. They work well on the images with homogeneous backgrounds andhigh-contrast targets. However, when facing highly heterogeneous backgrounds,they would not perform very well, mainly due to: 1) the existence of strongedges and other interfering components, 2) not utilizing the priors fully.Inspired by this, we propose a novel method to exploit both local and non-localpriors simultaneously. Firstly, we employ a new infrared patch-tensor (IPT)model to represent the image and preserve its spatial correlations. Exploitingthe target sparse prior and background non-local self-correlation prior, thetarget-background separation is modeled as a robust low-rank tensor recoveryproblem. Moreover, with the help of the structure tensor and reweighted idea,we design an entry-wise local-structure-adaptive and sparsity enhancing weightto replace the globally constant weighting parameter. The decomposition couldbe achieved via the element-wise reweighted higher-order robust principalcomponent analysis with an additional convergence condition according to thepractical situation of target detection. Extensive experiments demonstrate thatour model outperforms the other state-of-the-arts, in particular for the imageswith very dim targets and heavy clutters.
机译:已经提出了许多用于红外小目标检测的最新方法。它们在具有均一背景和高对比度目标的图像上效果很好。但是,当面对高度异构的背景时,它们的性能将不佳,主要是由于:1)存在优势和其他干扰因素; 2)没有充分利用先验知识。受此启发,我们提出了一种新颖的方法来同时利用两者本地和非本地优先级同时进行。首先,我们采用新的红外补丁张量(IPT)模型来表示图像并保留其空间相关性。利用目标稀疏先验和背景非局部自相关先验,将目标背景分离建模为鲁棒的低秩张量恢复问题。此外,借助结构张量和重新加权的思想,设计了一种入口局部结构自适应和稀疏性增强权重,以代替全局恒定权重参数。根据目标检测的实际情况,可以通过元素加权的高阶鲁棒主成分分析并附加一个收敛条件来实现分解。大量实验表明,我们的模型优于其他最新技术,特别是对于目标非常暗淡且杂乱无章的图像。

著录项

  • 作者

    Dai, Yimian; Wu, Yiquan;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号